教授
所在位置 网站首页 > 师资队伍 > 专任教师 > 教授 > 正文
庄平辉

职称:教授

职务:

学历:博士

电子邮件:zxy1104@xmu.edu.cn

联系电话:18959285820

办 公 室:数理大楼651

教育经历:

1978-1982: 福州大学计算机科学系计算数学专业,获学士学位;

1985-1988: 福州大学计算机科学系计算数学专业,获硕士学位;

2005-2008: 365be体育官网计算数学专业,获博士学位;

工作经历:

2006年6月-2006年9月:澳大利亚昆士兰理工大学,访问学者;

2009年7月-2009年12月:澳大利亚昆士兰理工大学,访问学者;

2014年7月-2014年10月:澳大利亚昆士兰理工大学,访问学者;

1982年-1985年 石油大学计算机科学系,助教;

1988年4月至今:365be体育官网,1988年晋升讲师,1998年晋升副教授。2012年晋升教授

研究方向:

微分方程数值方法及其理论分析,分数阶微分方程

授课情况:

数学分析,数值逼近,数值代数,计算方法,高级语言程序设计,计算机实用技术,数据库管理,Visual Basic程序设计,高等数学,线性代数,Matlab基础等。

科研成果:

[ 1]《分数阶偏微分方程数值方法及其应用》,刘发旺,庄平辉,刘青霞著,科学出版社,2015年11月.

[2]《高等数学精品课堂》(上,下册),林建华,庄平辉,林应标编著,厦门大学出版社出版,2007年11月。

[3]《高等数学》(上,下册),林建华,杨世廞,高琪仁,许清泉,庄平辉,林应标编,北京大学出版社,2010-2011.

[4]《高等数学学习指导》(上,下册),林建华,杨世廞,高琪仁,许清泉,庄平辉,林应标编,厦门大学出版社,2011-2012.

获奖:

2009年厦门大学工商银行奖(教学类),2015年厦门大学本科学业竞赛优秀指导老师,2019年厦门大学建设银行奖(教学类)。

主持项目:

[1]若干无界结构体电磁散射问题的高效数值方法,国家自然科学基金面上项目(11771364),项目组主要成员,2018-2021.

[2] 积分微分方程和反常扩散问题的高效谱方法,国家自然科学基金面上项目(11471274),项目组主要成员,2015-2018

[3]非结构网格谱元法及其应用,国家自然科学基金面上项目(11071203),项目组主要成员,2011-2013.

[4] 分数阶扩散方程的数值方法及其理论分析,福建省自然科学基金,项目主持者,2005-2007.

[5] 奇异摄动偏微分方程问题的数值方法及其应用,国家自然科学基金(10271098),项目组主要成员, 2003.1-2005.12.

[6]谱元法湍流大涡模拟,国家自然科学基金, 项目组成员,2002.1-2004.12

[7] 非线性发展方程及其科学计算,国家自然科学基金,项目组成员,1998.1-2000.12

论文:

[1]Qingxia Liu, Pinghui Zhuang, Fawang Liu, Junjiang Lai, Vo Anh, Shanzhen Chen, An investigation of radial basis functions for fractional derivatives and their applications, Computational Mechanics, 65(2020), 475-486, http://doi.org/10.1007/s00466-019-01779-z.

[2]Q.Z. Liu, S.J. Mu, Q.X. Liu, B.Q. Liu, X.L. Bi, P. H. Zhuang, etc, An RBF based meshless method for the distributed order time fractional advection-diffusion equation, Engineering Analysis with Boundary Elements, 96(2018) 55-63.

[3]X.L. Bi, S.J. Mu, Q.X. Liu, Q.Z. Liu, B.Q. Liu, P. H. Zhuang, etc, Advanced implicit meshless approahes for the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative, International Journal of Computational Methods, 15(5) (2018), 1850032.

[4]Feng, LB; Liu, FW , Turner, I; Zhuang, PH, Numerical methods and analysis for simulating the flow of a generalized Oldroyd-B fluid between two infinite parallel rigid plates, International Journal of Heat and Mass Transfer, 115  B, 2017,  1309-1320.

[5]L. B. Feng,P. Zhuang,F.Liu,I.Turner,V.Anh,J.Li,A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients,Computers and Mathematics with Applications,73,2017,1155–1171.

[6]P. Zhuang,F. Liu ,I. Turner,V. Anh,Galerkin finite element method and error analysis for the fractional cable equation,Numerical Algorithms, 72,2016,447–466.

[7]L. B. Feng,P. Zhuang,F. Liu , I. Turner,Y. T. Gu,Finite element method for space-time fractional diffusion equation,Numerical Algorithms, 72,2016,749–767.

[8]F. Liu, P. Zhuang, I.Turner, V. Anh, K.Burrage, A semi-alternating direction method for a 2-D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain, Journal of Computational Physics,293, 2015, 252-263.

[9]L.B. Feng, P. Zhuang, F. Liu, I. Turner, Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation, Applied Mathematics and Computation, 257, 2015,  52–65

[10]Q. Liu, F. Liu, Y.T. Gu, P. Zhuang, J. Chen, I. Turner, A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion equation, Applied Mathematics and Computation, 256, 2015 930–938

[11]Libo Feng, Pinghui Zhuang, Fawang Liu, Ian Turner and Qianqian Yang, Second-Order Approximation for the Space Fractional Diffusion Equation with Variable Coefficient, Progress in Fractional Differentiation and Applications, 1(1), 2015, 23-35

[12]P. Zhuang, F. Liu, I. Turner, Y.T. Gu, Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation, Applied Mathematical Modelling, 38,  2014, 3860–3870

[13]F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Applied Mathematical Modelling, 38, 2014, 3871–3878

[14]H. Zhang, F. Liu, P. Zhuang, I. Turner, V. Anh, Numerical analysis of a new space–time variable fractional order advection–dispersion equation, Applied Mathematics and Computation, 242, 2014, 541–550

[15]Fawang Liu, Mark M. Meerschaert, Robert J. McGough, Pinghui Zhuang, Qingxia Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fractional Calculus and Applied Analysis,16(1),2013,9-25

[16]F. Liu, P. Zhuang and K. Burrage, Numerical methods and analysis for a class of fractional advection–dispersion models, Computers & Mathematics with Applications, 64(10), 2012, 2990–3007.

[17]Y. T. Gu and P. Zhuang, Anomalous sub-diffusion equations by the meshless collocation method, Australian Journal of Mechanical Engineering, 10(1), 2012, 1 - 8.

[18] P. Zhuang, Y. T. Gu, F. Liu, I. Turner and P. K. D. V. Yarlagadda, Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method, International Journal for Numerical Methods in Engineering, Vol. 88, 13(2012),1346–1362.

[19]Q. Liu, Y. T. Gu, P. Zhuang, F. Liu and Y. Nie, An implicit RBF meshless approach for time fractional diffusion equations, Computational Mechanics, 48(2011), 1-12.

[20]Y.T. Gu, P. Zhuang and Q. Liu, An advanced meshless method for time fractional diffusion equation, International Journal of Computational Methods, 8(4) (2011), 653-665.

[21]Y. T. Gu, P. Zhuang and F. Liu,  An Advanced Implicit Meshless Approach for the Non-Linear Anomalous Subdiffusion Equation, Computer Modeling in Engineering & Sciences, 56(3)(2010), 303-334.

[22]Ping-Hui  Zhuang and Qing-Xia LIU, Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative, Applied Mathematics and Mechanics, 30(12)(2009), 1533-1546.

[23]P. Zhuang, F. Liu, V. Anh and I. Turner, Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process, IMA Journal of Applied Mathematics, 74(2009), 645-667.

[24]P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. on Numerical Analysis, 47(3)(2009),1760-1781.

[25]S. Chen, F. Liu, P. Zhuang and V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Applied Mathematical Modelling, 33 (2009) , 256-273.

[26]P. Zhuang, F. Liu, V. Anh and I. Turner, New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation, SIAM J. on Numerical Analysis, 46(2) (2008) ,1079-1095.

[27]F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage , Stability and Convergence of the difference Methods for the space-time fractional advection-diffusion equation, Applied Mathematics and Computation, 91, (2007), 12-20.

[28]P. Zhuang and F. Liu, Finite difference approximation for two-dimensional time fractional diffusion equation, J. Algorithms & Computational Technology, 1 (2007), 1-15.

[29]P. Zhuang and F. Liu, Implicit difference approximation for the two-dimensional space-time fractional diffusion equation, J. Appl. Math. Computing, 25(2007), 269-282.

[30]P. Zhuang, F. Liu, I. Turner and V. Anh, Numerical Treatment for the Fractional Fokker-Planck Equation, ANZIAM J., 48 (2007), 759-774.

[31] Y. Lin, P. Zhuang and F. Liu, Fractional high order approximation for the system of the nonlinear fractional ordinary differential equations, Journal of Xiamen University(NATURAL Science),  6 (2007), 765-769.

[32]J.  Song, F. Liu and P. Zhuang, An approximate solution for the non-linear anomalous subdiffusion equation using the Adomian decomposition method, Journal of Xiamen University (NATURAL Science), 46(4), (2007), 469-473.

[33]P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Computing, 22(3) (2006), 87-99.

[34]F. Liu, P. Zhuang, I. Turner, V. Anh, A fractional-order implicit difference approximation for the space-time fractional diffusion equation, 47, ANZIAM J. (E)(2006), 48-68.

[35]P. Zhuang and F. Liu, An explicit difference approximation for the space-time fractional diffusion equation, Numerical Mathematics: A Journal of Chinese Universities, Vol. 27 Supplement (2005), 223-230.

[36]F. Liu, V. Anh, I. Turner and P. Zhuang, Numerical simulation for solute transport in fractal porous media, ANZIAM J., 45(E)(2004),  461-473.

[37]T. Zheng, P. Zhuang, X. Cai and F. Liu, A Petrov-Galerkin method for singularly perturbed time-dependent convection-diffusion equations with non-smooth data, Computational Mechanics, ID-614(2004).

[38]F. Liu, V. Anh, I. Turner and P. Zhuang, Time fractional advection dispersion equation, J. Appl. Math. Computing, Vol. 13(2003), 233-245.

国际会议论文:

[1]P. Zhuang, F. Liu, V. Anh, I. Turner, The Galerkin finite element approximations of the fractional Cable equation,  The 5th Symposium on Fractional Differentiation and its Applications(FDA’12), May 14-17 2012, Hohai University, Nanjing, China.

[2]P. Zhuang, F. Liu, V. Anh, I.Turner, Y. T. Gu, Two novel numerical methods of a space-fractional Boussinesq equation, 4th International Conference on Computational Methods (ICCM2012) , 25 - 28 November 2012, Crowne Plaza, Gold Coast, Australia.

[3]F. Liu, P. Zhuang,  V. Anh, I.Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the two-sided space fractional diffusion equation with a variable coefficient,4th International Conference on Computational Methods (ICCM2012) , 25 - 28 November 2012, Crowne Plaza, Gold Coast, Australia.



Baidu
sogou